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Abstract
Previous genome-wide association study (GWAS) focused on low-order interactions between pairwise single-nu-
cleotide polymorphisms (SNPs) with significant main effects. Little is known how high-order interactions effect,
especially one among the SNPs without main effects regulates quantitative traits.Within the frameworks of linear
model and generalized linear model, the LASSO with coordinate descent step can be used to simultaneously analyze
thousands and thousands of SNPs for normal and discrete traits. With consideration of high-order interactions
among SNPs, a huge number of genetic effects make the LASSO failing to work under the presented condition of
computation. Forward LASSO analysis is, therefore, proposed to shrink most of genetic effects to be zeros stage
by stage. Simulation demonstrates that our proposed method could be used instead of the LASSO method for full
model in mapping high-order interactions. Application of forward LASSO method is provided to GWAS for carcass
traits and meat quality traits in beef cattle.
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INTRODUCTION
The interaction of alleles at different loci is ubiqui-

tously observed in plant, animal and biomedical stu-

dies of human diseases. Both physiological theories

and empirical findings imply that the complexity

of genetic regulations and metabolic pathways are

results of complex networks of interactions involving

multiple genes [1–3]. Therefore, gene interaction

plays an essential role for understanding the genetic

architecture and its dynamics underlying the quanti-

tative trait and complex disease of interest [4, 5].

Because of the modeling challenges and computa-

tional costs of investigating higher-order gene–gene

interactions, however, current genome-wide linkage

analyses or association studies have been focused on

identifying main genetic effects [6–13] and pairwise

interaction effects [6, 14–23]. Although numerous

evidences suggest that genes not only interact with

each other in a pairwise manner but could also be

involved in complicated networks of high-order

interactions [24], little is known about how high-

order interaction effect governs complex quantitative

traits.

With the aid of high-throughout single-nucleo-

tide polymorphisms (SNPs) genotyping technology,

genome-wide association study (GWAS) provides
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possibilities of identifying various interaction effects

among multiple genes for complex quantitative

traits. But locating a few significantly linked inter-

actions of astronomical numbers of possible

interaction combinations is an extremely challenging

task. To this end, sophisticated statistical procedures

and computational algorithms were developed over

the past decade of analyzing GWAS data sets. In

general, there are three types of statistical methods:

non-parametric methods, parametric methods and

Bayesian methods. The most representative non-

parametric method is the combinatorial partitioning

method [25] that identifies partitions of multilocus

genotypes according to corresponding inter-individ-

ual variation in quantitative trait levels. Inspired by

combinatorial partitioning method, a multifactor

dimensionality reduction (MDR) method [6] was

developed for detecting and characterizing high-

order gene–gene and gene–environment interactions

in case–control study. Subsequently, Lou et al. [26]

generalized MDR to analyze both dichotomous and

continuous phenotypes while adjusting for both dis-

crete and continuous covariates. Following the par-

tition of gene interaction by Cockerham [27] and

Kempthorne [28], parametric methods were de-

veloped, where assumptions of biologically mean-

ingful genetic models are required. Among many

genetic models, the logic regression is widely used

and is regarded as a fundamental parametric method

for uncovering gene interaction effect for dichotom-

ous trait [29–32]. Meanwhile, backward regression,

stepwise regression and penalized regression strategies

were proposed to solve for logic interactive models.

Despite their successes in identifying interesting gen-

etic variants and interactions in small data sets, all the

aforementioned methods are infeasible for analyzing

large genetic data sets. Bayesian method [33], on the

other hand, is promising for jointly modeling and

testing interactions among more genotyped SNPs

for dichotomous disease traits. But because the com-

puting burden of Bayesian analysis largely depends

on the complexity of Monte Carlo Markov Chain

algorithms and the sample size, this framework may

not be considered for analyzing higher-order inter-

actions among numerous genetic variants.

Compared with astronomical interaction combin-

ations among all genotyped SNPs across the entire

genome, only a few main effects and interaction

effects are expected to be important for elucidating

the complex genetic architecture. This is consistent

with the sparsity assumption of LASSO [34–36]

regressions for high-dimensional data analysis and

variable selections. In particular for analyzing large-

scale genomic data, LASSO with coordinate descent

step [37] or Gibbs samplers [38] have been efficiently

used to detect SNPs with significant main effects.

Given the capability of LASSO regressions in

analyzing the main effects of hundreds of thousands

of SNPs simultaneously, once carefully designed,

LASSO-based statistical methods can be used to iden-

tify interaction effect among SNPs. In this study, we

integrate LASSO regressions into the general forward

regression strategy, resulting in a stagewise interaction

effect model for identifying high-order interactions

for both quantitative traits and discrete traits in

GWAS. Unlike many other methods where an inter-

action between two predictors is included only if both

predictors are marginally significant, our strategy is

built on weak heredity principle of interaction effects

[39]. In other words, not all SNPs in an interaction

have to exhibit significant marginal effects. In this

way, the proposed method could efficiently and ef-

fectively select important main effects as well as

higher-order interactions that may be missed by

other methods. The statistical power and computa-

tional efficiency of this forward LASSO method is

demonstrated by computer simulations. Moreover, it

is applied to GWAS analysis of birth weight and mar-

bling in beef cattle.

METHOD
Linear genetic model for quantitative
traits
In genome-wide association studies for gene map-

pings, phenotypic values are observed and m SNP

markers are genotyped for n individuals drawn

from a randomized population. If the trait of interest

is normally distributed and only additive main and

interaction effects of SNPs are considered, the linear

model for phenotype ui, i ¼ 1, 2, � � � , n can be

described as

ui ¼ ’þ
Xm
j¼1

xijaj þ
Xm�1

j¼1

Xm
j0¼jþ1

xijxij0djj0

þ
Xm�2

j¼1

Xm�1

j0¼jþ1

Xm
j00¼j0þ1

xijxij0xij00djj0j00 þ � � � þ"i

ð1Þ

where ’ is the population mean, aj is additive gen-

etic effect of the jth SNP, xij is the indicator variable

corresponding to the jth SNP genotype, defined as 0

for heterozygote, �1 and 1 for the two homozygote,

page 2 of 10 Gao et al.



as usual. djj0 is additive� additive interaction effect

between the jth and j’th SNPs (two-way interaction),

djj0j00 is additive� additive� additive interaction

effect among the jth, j’th and j’’th SNPs (third-order

interaction). "i is normally distributed residual error

with mean zero and residual variance s2.

Usually, the number of SNPs, m, far exceeds the

sample size in genome-wide association studies, so

that model (1) becomes the supersaturated with

n�M being the number of genetic effects. In

practice, however, only a few genetic effects are

non-zero because of the limited number of QTLs

governing the trait of interest. By solving the follow-

ing least squares using LASSO with a coordinate

descent step,

min
Xn
i¼1

�
ui � ’�

Xm
j¼1

xijaj �
Xm�1

j¼1

Xm
j0¼jþ1

xijxij0djj0

"

�
Xm�2

j¼1

Xm�1

j0¼jþ1

Xm
j00¼j0þ1

xijxij0xij00djj0j00 � � � �
�2

þ l
Xm
j¼1

jajj þ
Xm�1

j¼1

Xm
j0¼jþ1

jdjj0 j þ
Xm�2

j¼1

Xm�1

j0¼jþ1

Xm
j00¼j0þ1

jdjj0j00 j

 !#
,

ð2Þ

it is possible to shrink most of genetic effects to zeros.

Here, l is a tuning parameter, which will be opti-

mized with cross-validation.

If all possible interactions are included in the

model (1), 2m genetic effects will be analyzed.

Even if only two-way interactions are considered,

there are 1
2
mðmþ 1Þ genetic effects to be estimated

and tested. As the number of SNPs, m, is usu-

ally on the order of hundreds of thousands, imple-

menting LASSO regression directly for the genetic

model (1) is neither theoretically valid nor compu-

tationally feasible given the current computational

resources.

To identify important main effects as well as

higher-order interactions in GWAS data analyses,

we assume weak heredity on the heredity structures

of interaction effects. According to Chipman (39),

there are two versions of the effect heredity principle

in statistics: strong heredity and weak heredity.

Under strong heredity assumption, if the interaction

is significant, both predictors should be marginally

significant. Under weak heredity, on the other

hand, at least one of these predictors is needed to

be significant. Clearly, many prevailing methods for

identifying interactions in GWAS data sets implicitly

assume strong heredity structure, meaning that inter-

actions are tested among a subset of marginally sig-

nificant SNPs. However, throughout this article, we

will only assume weak heredity. This is a weaker

assumption, but could greatly facilitate computations

as well as final results interpretations. In what follows

we will show the weak heredity principle could

reduce the model dimensionality dramatically and

complete our existing knowledge on the genetic

regulatory network by incorporating genetic factors

that are marginally insignificant but jointly

important.

Specifically, we partition the model selection

problems of the full model (1) into many stages ac-

cording to the order of interactions considered, and

then select non-zero genetic effects at each stage by

LASSO regressions. We call this strategy forward

LASSO, as it is similar to forward regression for

model selections. With consideration of the inter-

actions inclusive at least one SNP of non-zero

main effect, the forward LASSO shrinkage estima-

tion for high-order interactions is simplified to carry

out in the following steps:

(i) Shrink main additive effects to zero by applying

LASSO regression to the main additive effect

model: ui ¼ ’þ
Pm
j¼1

xijaj þ "
0

i

(ii) Form two-way interaction terms among the

whole-genome SNPs and SNPs with non-zero

main effects identified in step (i). Then

shrink the two-way interaction effects as

well as non-zero main effects to zero by

a LASSO regression on the following model:

ui ¼ ’þ
Pk
j¼1

xijaj þ
Pm

j¼1, j6¼l
xijxildjlþ"00i , with k

being the number of non-zero main effects

and l being the numbering of non-zero main

effect.

(iii) Form the third-order interaction terms among

the whole-genome SNPs and SNPs with non-

zero two-way interaction effects. Then similar

to step (ii), shrink third-order interactions, non-

zero two-way interactions and non-zero main

effects to zero in a LASSO regression containing

all the aforementioned terms.

(iv) The rest can be done in the same manner.

(v) Re-estimation and significance test for all non-

zero genetic effects identified by the procedure

described earlier in the text using ordinary least-

square method.
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In implementation of the forward LASSO

method, it needs to be specially noticed that genetic

effects re-estimated by ordinary least-square method

are biased upward because of high variable selection

of forward LASSO. The permutation (or bootstrap)

should be a good choice for the bias correction in

step (v). Also, if too many SNPs are analyzed, as used

in real data analysis, each step can be further divided

into multiple stages by each non-zero main effect or

interaction effect shrunk at last step.

Generalized linear genetic model for
discrete traits
In genetic analyses of plants and animals, binary traits

and categorical traits are commonly seen, which

follow binomial and multinomial distributions, re-

spectively. As generalizations of binary traits and cat-

egorical traits, binomial traits and multinomial traits

are also frequently observed, which are defined as the

proportions of the number of events happened in a

number of trials. Moreover, Poisson trait is another

example of discrete traits with measurements being

counts in a given temporal or spatial interval. The

distributions of the aforementioned phenotypic traits

belong to an exponential family; thus, the general-

ized linear model is used to mapping QTLs respon-

sible for the discrete traits.

A generalized linear model [40, 41] consists of

three components: phenotype with a probability dis-

tribution from the exponential family, the linear pre-

dictor and the link function [40]. Similar to the

model for continuous traits (1), linear predictors in

this scenario can be integrated by

Zi ¼’þ
Xm
j¼1

xijaj þ
Xm�1

j¼1

Xm
j0¼jþ1

xijxij0djj0

þ
Xm�2

j¼1

Xm�1

j0¼jþ1

Xm
j00¼j0þ1

xijxij0xij00djj0j00

ð3Þ

The link function provides the relationship be-

tween all linear predictors and the mean of the ex-

ponential distribution family, which is denoted by

Zi ¼ g mi
� �

or mi ¼ g�1 Zi

� �
for i ¼ 1, 2, � � � , n ð4Þ

where g is the link function and g�1 is its inverse

(mean function). It should be noted that the link

function is differentiated in distribution type of dis-

crete traits. Moreover, the variance of discrete

phenotype VðyiÞ can be derived for each distribution

of discrete trait, which is useful for estimating model

parameters as described later in the text.

The re-weighted least-square method by

Wedderburn [41] is used to estimating the param-

eters in generalized linear model. By defining

Di ¼
@g�1ðZiÞ

@Zi
ð5Þ

xi ¼ Zi þD�1
i yi � mi
� �

ð6Þ

wi ¼
D2

i

V�1ðyiÞ
ð7Þ

the quadratic approximation of the log-likelihood

function is obtained by Taylor expansions as

Xn
i¼1

wiðxi � ZiÞ
2

ð8Þ

In the case when the number of genetic effects is

larger than sample size, the LASSO with a coordinate

descent step [35, 36] can efficiently estimate few

non-zero genetic effects, by minimizing

Xn
i¼1

wiðxi � ZiÞ
2

þ l
Xm
j¼1

jajj þ
Xm�1

j¼1

Xm
j0¼jþ1

jdjj0 j þ
Xm�2

j¼1

Xm�1

j0¼jþ1

Xm
j00¼j0þ1

jdjj0j00 j

 !

ð9Þ

with l being as in Equation (2).

As wi is the function of the estimated parameters,

the iteration is required for shrinking most of genetic

effects to be zeros, as described previously [35]. Based

on the so-called iteratively re-weighted LASSO for

generalized linear model, the forward LASSO

described earlier in the text can be used to analyze

the huge number of high-order interactions in

GWAS for discrete traits.

Simulation study
The simulation is conducted to evaluate the forward

LASSO method proposed here (forward for short) to

the LASSO for full model (1) (full for short). For

simplification of simulation, 70 SNPs with equal

allele frequencies are simulated. The indicator vari-

able xij is derived from zij following a standard multi-

variate normal distribution with constant correlations

of 0.1 according to

xij ¼
1 zij > 0:675

0 �0:675 � zij � 0:675

�1 zij < �0:675

8<
:
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Two main effects, three two-order interactions,

two third-order interactions and one fourth-order

interaction are simulated on the SNPs 2, 11, 23,

38, 50, 60 and 69, where only the 23th and 60th

SNPs have the main genetic effects. We assign gen-

etic effects of simulated QTLs by relative heritabil-

ities (Table 2), so that given residual variance of 1.0,

in total these QTLs explain 29.4% of phenotypic

variation, and the heritability of single QTLs for

analyzed traits range from 2.0 to 5.4%. Then we

simulate phenotypic value for the quantitative trait

from a normal distribution with the expectation Zi
without population mean and residual variance. For

discrete phenotypic trait, binary phenotypic value is

defined as 1 if the normally distributed phenotypic

value is positive and as 0 otherwise.

A total of 500 replicated simulations are used to

estimate QTL genetic effects and access the statistical

power of QTL detections. Each simulated dataset is

analyzed by two LASSO-based approaches (‘for-

ward’ LASSO approach or ‘full’ model LASSO ap-

proach), MDR method [6] and INTERSNP

method [42]. Note that, as a non-parametric

method, MDR method can only report the statistical

power, but not estimate the estimated QTL genetic

effects. INTERSNP method has ability to analyze

only up to the three-way interactions. Statistical

power of QTL detection is evaluated at each locus

and is defined as the proportion of all simulations

where the test statistic exceeds its critical value. We

set the significance level at 5%. In addition, false-

positive rate is evaluated with the 500 replicated

simulations under the null model without genetic

effects. Note that we report means and standard de-

viations of QTL genetic effects based on simulations

whose corresponding estimated genetic effects are

significant.

The statistical powers of the four competing

methods and estimated genetic effects of two

LASSO-based approaches and INTERSNP method

are presented in Tables 1 and 2, respectively. In gen-

eral, two mapping methods exhibit the following

similar statistical behaviors in analyzing both nor-

mally distributed and binary phenotypic traits. (i)

statistical power of QTL detection and the precision

of parameter estimation increase as the QTL herit-

ability increases; (ii) statistical power of QTL detec-

tion is higher, and false-positive rate is lower in the

same simulation scenario; (iii) large sample size is

beneficial to identify QTLs; and (iv) the higher the

order of interactions, the more difficult the QTL

detections. Clearly, the four competing methods

have comparable statistical power. The two

LASSO-based approaches, however, are able to

well estimate QTL genetic effects because of the

incapability of the other method to handle an over-

saturated ultrahigh-dimensional model. In compari-

son, forward LASSO method does more accurately

than the LASSO method for full model. In terms of

the false-positive rate, it is <10% for the four com-

peting methods in all simulation scenarios, although

the false-positive rate of forward LASSO and

INTERSNP methods is slightly higher than those

of other methods.

Our proposed method is computationally efficient

as well. In simulated data sets, each with 70 simulated

SNPs, up to four-way interactions and 2000 subjects,

we compare computational time for three methods

in estimating 974 121 parameters. On an Intel core 4

PC with a 3.4 GHz processor and 16.00 GB random

access memory, forward LASSO method and

LASSO method for full model take 10.3 s and 15.1

min on average, respectively, whereas both MDR

and INTERSNP methods run �10 min.

Real data analysis
Experimental animals are originated from Ulgai,

Xilingol league, Inner Mongolia of China, which

consist of 1058 young Simmental bulls being born

in 2008–11. After weaning, the cattle were moved to

Beijing Jinweifuren cattle farm and were fattened

under the same feeding and management. Each in-

dividual was timely observed for growth and devel-

opment traits until slaughtered from 16 to 18 months

old. During the period of slaughter, carcass traits and

meat quality traits were measured according to

Institutional Meat Purchase Specifications for fresh

beef guidelines. The blood samples were collected

along with the regular quarantine inspection of the

farms without the need of ethical approval. DNAs

were extracted from these blood samples using the

routine procedures. The Illumina BovineHD

BeadChip was adopted for quantifying and genotyp-

ing DNAs.

Before statistical analysis, we pre-process the SNP

data and remove those SNPs whose call rates are

<90%, minor allele frequencies are <3%, genotype

appearances are less than five individuals or departure

from Hardy Weinberg Equilibrium is severe (with

<10�6 probability). Moreover, individuals with

>10% missing genotypes or >2% Mendelian error

rate for SNP genotypes are excluded. Finally, 986

Forward LASSO for high-order interactions page 5 of 10



individuals and 631 396 SNPs are remained for

GWAS.

Of 40 carcass traits and meat quality traits, birth

weight and marbling traits are taken as examples of

quantitative traits and discrete traits, respectively, to

illustrate the merit of forward LASSO method. To

reduce the influence of multiple uneven categories

on the power of QTL detection, the marbling trait is

simplified as binary traits including only two cate-

gories. Being a quantitative trait, birth weight is ana-

lyzed based on the LASSO for linear model, whereas

marbling is analyzed based on the LASSO for GLM

with probit link function. Systematic environment

factors, including measuring year and slaughtering

month old are included in the genetic model, and

population stratification is taken account as well. In

the GWAS, SNPs involved in up to fourth-order

interactions with at least one SNP of significant

main effect are searched.

Both the LASSO method for full model and

MDR method fail to work because of the astro-

nomic number of SNP combinations. Only up to

third-order interactions for the two traits analyzed

are identified by using forward LASSO method.

Table 2: Mean estimates and standard deviations (in parentheses) of QTL effects obtained with the three mapping
methods for the simulated data sets with 1000 and 2000 sample sizes

Trait Sample size Method Q1 Q2 Q 1�Q2 Q2�Q3 Q1�Q4 Q2�

Q3�Q 5

Q1�

Q4�Q6

Q2�Q3�

Q5�Q7

True effect 0.24 �0.26 �0.35 0.32 0.25 0.35 �0.38 0.39
Normal 1000 Forward 0.25(0.05) �0.27(0.05) �0.35(0.10) 0.33(0.07) 0.28(0.06) 0.38(0.07) �0.38(0.11) 0.41(0.07)

Full 0.26(0.04) �0.28(0.05) �0.37(0.08) 0.35(0.07) 0.30(0.06) 0.41(0.11) �0.43(0.13) 0.46(0.09)
INTERSNP 0.32(0.11) �0.23(0.08) �0.45(0.10) 0.39(0.08) 0.22(0.07) 0.42(0.08) �0.46(0.15) ^

2000 Forward 0.24(0.04) �0.26(0.04) �0.35(0.07) 0.32(0.06) 0.25(0.05) 0.35(0.06) �0.37(0.08) 0.40(0.06)
Full 0.24(0.04) �0.26(0.04) �0.35(0.06) 0.32(0.06) 0.26(0.05) 0.37(0.06) �0.38(0.09) 0.40(0.11)
INTERSNP 0.27(0.12) �0.29(0.08) �0.43(0.11) 0.35(0.08) 0.24(0.09) 0.37(0.05) �0.39(0.09) ^

Binary 1000 Forward 0.27(0.06) �0.28(0.09) �0.33(0.17) 0.35(0.10) 0.30(0.09) 0.41(0.17) �0.43(0.19) 0.42(0.04)
Full 0.28(0.08) �0.28(0.10) �0.32(0.23) 0.35(0.16) 0.31(0.17) 0.26(0.42) �0.31(0.38) 0.45(0.13)
INTERSNP 0.27(0.08) �0.30(0.10) �0.40(0.12) 0.43(0.10) 0.43(0.15) 0.47(0.12) 0.56(0.21) ^

2000 Forward 0.25(0.05) �0.26(0.08) �0.33(0.14) 0.33(0.07) 0.27(0.07) 0.37(0.09) �0.37(0.16) 0.42(0.09)
Full 0.25(0.06) �0.26(0.08) �0.31(0.20) 0.32(0.11) 0.28(0.10) 0.27(0.24) �0.24(0.28) 0.39(0.19)
INTERSNP 0.28(0.09) �0.31(0.09) �0.29(0.11) 0.35(0.08) 0.41(0.11) 0.39(0.14) �0.45(0.04) ^

Table 1: Statistical powers of QTL detection (%) and false-positive rates (FPR, %) obtained with the four mapping
methods for the simulated data sets with 1000 and 2000 sample sizes

Trait Sample size Method Q1 Q2 Q1�Q2 Q2�Q3 Q1�Q4 Q2�Q3

�Q5

Q1�Q4

�Q6

Q2�Q3�

Q5�Q7

FPR

Normal 1000 Forward 43.4 50.0 47.4 39.2 23.4 25.4 25.8 14.2 8.6
Full 48.4 53.6 52.2 45.4 21.6 21.8 26.8 16.4 8.0
MDR 46.6 53.2 46.2 35.2 17.8 20.4 25.4 14.8 8.1
INTERSNP 47.2 55.0 50.4 33.6 18.2 19.8 22.4 ^ 8.8

2000 Forward 93.4 93.6 90.8 92.6 83.8 79.2 81.6 64.0 5.8
Full 99.6 99.4 100.0 99.0 80.2 78.6 86.2 68.4 5.4
MDR 100 100 96.4 98.2 81.4 80.2 85.2 69.4 5.6
INTERSNP 99.4 100 98.2 93.6 84.6 81.2 84.4 ^ 5.9

Binary 1000 Forward 90.2 75.0 44.0 46.8 85.2 30.8 83.2 31.2 7.6
Full 90.6 74.2 49.8 49.6 83.6 31.6 83.6 31.4 7.2
MDR 86.0 73.4 44.8 46.8 81.0 30.0 83.4 28.4 7.4
INTERSNP 85.4 78.6 42.6 47.4 80.6 32.2 82.8 ^ 7.9

2000 Forward 100 98.8 88.6 92.4 100 88.8 89.8 73.4 4.0
Full 99.4 99.2 89.0 93.0 99.0 89.6 92.4 78.2 3.6
MDR 96.8 100 80.8 93.4 100 86.8 90.0 74.2 3.8
INTERSNP 98.4 98.8 90.2 91.6 96.8 84.6 86.2 ^ 4.2
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In implementing each step of forward LASSO

method, the interactions are formed separately with

each SNP with non-zero main effect or interaction

of previous order and all genome-wide SNPs.

Further, we have randomly partitioned the real

data set into two subsets and applied the proposed

method to analyze these two subsets separately. The

results from five repeated partitions show that there is

smaller difference in the selected predictors between

the two subsets, which demonstrates the stability of

the mapping results.

Significant main effect SNPs and epistases of no

more than three orders are summarized in Table 3

for birth weight and in Table 4 for marbling, respect-

ively. Coincidentally, 11 significant main and inter-

action effects are detected for both traits and two

three-way interactions are detected for both traits

as well. However, the marble trait is associated

with more interactions. All detected SNPs explain

17% of phenotypic variation for birth weight and

47% for marbling. Especially, the contribution of

interactions among SNPs to phenotypic variation is

large for marbling. Two- and three-way interactions

contribute 23.75 and 14.03% of total heritability,

respectively. On the other hand, all detectable

SNPs for birth weight have very low heritabilities,

except for the SNP with 8.87% heritability on the

15th chromosome. Biologically, these detected SNPs

locate within or near genes associated with growth

and development in beef cattle (Tables 3 and 4).

They may jointly regulate formation and develop-

ment of birth weight and marbling with these genes.

For a comparison with INTERSNP method, we

select top 1000 hits from single marker analysis, and

then check two-way interactions. Generally,

INTERSNP method can detect more significant

main-effect and interactive SNPs than forward

LASSO method for the two analyzed traits. Only

few same main-effect SNPs are located by using

the two mapping methods, which are

BovineHD2200015010 on chromosome 22 and

BovineHD1400001847 on chromosome 14 for

birth weight as well as BovineHD1300023732 on

chromosome 13 for marbling. Because of heavy

computational burden, INTERSNP method is also

hard to handle more than two-way interactions with

too many the selected SNPs from single-marker

analysis.

DISCUSSION
Different from forward regression where only one

independent variable is included in each step of re-

gressions, forward LASSO is capable of handling

hundreds of thousands of genetic effects at each

stage. The number of the genetic effects estimated

at each stage depends on the performance of the

LASSO algorithm incorporated as well as the com-

putational power of processors. Motivated by weak

heredity principle of interaction effects, our estima-

tion of n effects focus on interactions between each

non-zero n effects of a lower order and all genome-

wide SNPs, so that at least one non-zero main effect

SNP is included in the interaction effect detection.

Note that the significance test for non-zero genetic

effects is carried out at the final stage of forward

LASSO method, which can avoid the impact of

non-zero genetic effects included in a later stage.

Table 3: Significant main effect SNPs and interactions among SNPs for birth weight in beef cattle

Type QTL SNP Chr. Position Nearest gene �log(p) Effect Heritability
(%)

Name Distance
(bp)

Main effect Q1 BovineHD2200015010 22 52799535 BT.18085 Within 5.41 �0.94 1.23
Q2 BovineHD1500001499 15 6030018 BT.18504 Within 5.10 �2.52 8.87
Q3 BovineHD1400001847 14 6869573 KHDRBS3 571473 3.61 �0.73 0.74
Q4 BovineHD2400001759 24 6565808 SOCS6 737239 3.56 0.68 0.65
Q5 BovineHD1000024843 10 87201079 FLVCR2 756 3.53 �1.64 3.76

Two-way
interaction

Q6 BovineHD0300028625�Q5 3�Q5 99613961�Q5 TAL1 Within 3.12 0.81 0.92
Q7 BovineHD0300011290�Q3 3�Q3 36196363�Q3 MGC139448 Within 2.72 �0.24 0.08
Q8 BovineHD1700020147�Q1 17�Q1 69028276�Q1 MN1 403 401 3.98 �0.56 0.44
Q9 BovineHD1600008117 � Q4 16�Q4 28905372�Q4 DNAH14 124253 2.03 �0.38 0.20

Three-way
interaction

Q10 BovineHD2000000012�Q8 20�Q8 85671�Q8 ENSBTAG00000000617 16726 4.93 0.18 0.05
Q11 BovineHD2600009158�Q9 26�Q9 33994296�Q9 TCFL2 51628 2.74 0.03 0.00
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In forward LASSO, the quantitative traits and dis-

crete traits are analyzed based on the LASSO for

linear model and that for GLM, respectively.

Although the LASSO for GLM is also appropriate

for quantitative traits, it has lower computing effi-

ciency than that for linear model. Forward LASSO

for detecting high-order interactions in GWAS pro-

posed in this study has been coded in R language,

which can handle normal, binary, binomial, ordinal,

multinomial and Poisson traits. The program is freely

available on request from authors.

Statistically, detecting high-order interactions

among a large number of SNPs in GWAS is not

easy. On the one hand, pairwise combinatorial

search and test for significant genetic effects are not

feasible. On another hand, when estimating higher-

order n effects, statistical models expect a larger than

usual sample size to achieve desirable levels of statis-

tical power and false-positive rate. Once a certain

genotype combination among some SNPs is missing

in experimental population or does not exist in

nature, corresponding type of interaction effect can

not be identified. It is found in simulations that too

low frequency of genotype combination among

SNPs results in false and abnormal estimate of the

related interaction effect. Moreover, no interaction

among more than three SNPs is found in real data

analysis.

In beef cattle, for instance, Korean Hanwoo cattle

[43], Korean beef cattle [44] and Australian taurine

and indicine cattle [45] GWAS have been carried out

for detecting genetic variations associated with beef

carcass traits and meat quantity traits. Many signifi-

cant main effect SNPs were identified using the

simple linear regression and stepwise regression pro-

cedures. Barendse [46] have identified significant

interaction effect between SNPs at CAPN1 and

CAST for beef tenderness in both taurine- and

zebu-derived breeds and a larger additive� domin-

ance component of interaction effect than

additive� additive and dominance� dominance

components were observed. By selection designed

to increase the frequencies of the minor alleles for

two SNP markers in CSN151 and TG, adjusted fat

thickness showed a dominance association with the

TG SNP and an additive CSN1S1� additive TG

association [47]. Most currently, interaction effect

analysis by GWAS has found that the 11 SNP pairs

were significantly associated with carcass traits [48],

although higher-order interaction effect has not been

reported in beef cattle. In our real data analysis, for-

ward LASSO method has identified third-order

interaction among SNPs, which provides more her-

itabilities for the analyzed traits unexplained by cur-

rent GWAS for main effect and two-way interaction

Moreover, <50 000 SNPs were used in literature of

GWAS analyses of beef cattle, but our study con-

siders >600 000 SNPs. This will provide more in-

sight into exploring high-order interactions for

carcass traits in beef cattle.

Key points

� By evenly partitioning the interaction effect model into many
stages by the number of main effects, forward LASSO method
is proposed to analyze high-order interactions in GWAS.

� Our proposed method can efficiently identify high-order inter-
actions with at least one significant main effect for both quanti-
tative traits and discrete traits.

Table 4: Significant main effect SNPs and interactions among SNPs for marbling in beef cattle

Type QTL SNP Chr. Position Nearest gene �log(p) Effect Heritability
(%)

Name Distance
(bp)

Main effect Q1 BovineHD0400003329 4 11041270 TFPI2 1551 3.44 �0.18 0.86
Q2 BovineHD0800009637 8 31873954 C6KE17 147589 3.09 �0.35 3.24
Q3 BovineHD1300023732 13 81868064 ZNF217 5060 3.06 �0.31 2.54
Q4 BovineHD1400004974 14 17496444 FER1L6 Within 3.69 �0.32 2.71

Two-way
interaction

Q5 BovineHD0900018633�Q1 9�Q1 67365446�Q1 PTPRK Within 3.02 �0.33 2.88
Q6 BovineHD3000040536�Q2 30�Q2 140359650�Q2 BT.20005 43739 6.14 0.57 8.59
Q7 BovineHD3000044113�Q2 30�Q2 148534728�Q2 ENSBTAG00000025951 Within 13.88 0.19 0.95
Q8 BovineHD0600030851�Q3 6�Q2 109607469�Q3 LOC510550 7140 3.55 0.54 7.71
Q9 BovineHD0300030768�Q4 3�Q4 107020441�Q4 E1BF39 11733 3.10 0.37 3.62

Three-way
interaction

Q10 BovineHD2700011429�Q5 27�Q5 39417878�Q5 LRC3B 278 014 4.70 �0.51 6.88
Q11 BovineHD0100012484�Q7 1�Q7 43781308�Q7 MCATL 21228 2.83 0.52 7.15
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� Extensive simulations demonstrate that forward LASSO
method could be a promising alternative of the LASSOmethod
for fullmodel.

� GWAS for high-order interactions of birth weight andmarbling
in beef cattle exhibits the use of our proposedmethod.
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