中文 Contact
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal
Back CAAS 中文 Contact
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal

Newsroom

Home- Newsroom- Research Updates
Home- Newsroom- Research Updates
分享到

OsELF3-2, an ortholog of Arabidopsis ELF3, interacts with the E3 ligase APIP6 and negatively regulates immunity against Magnaporthe oryzae in rice

小 中 大
Source : Institute of Plant Protection
Rice blast, which is caused by the fungal pathogen Magnaporthe oryzae, significantly reduces rice yield in most rice-growing areas. Although many studies have shown that the ubiquitin E3 ligases play an important role in the regulation of blast resistance in rice, the function of their substrates in immune responses is still not fully understood. Recently, researchers at State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection (IPP), CAAS, have published a research paper about E3 ligase APIP6 substrate protein OsELF3-2 in rice.


OsELF3-2 plays a negative role in blast resistance and is degraded by APIP6-mediated ubiquitination pathway

They previously demonstrated that fungal effector AvrPiz-t in M. oryzae suppresses PAMP-triggered immunity (PTI) by targeting the rice RING E3 ligase APIP6 for degradation. However, the APIP6 substrates in immune responses remain unclear.
In this paper, they found that APIP6 interacts with OsELF3-2 (Homolog of Arabidopsis ELF3) in vitro and in vivo. Compared with the wild type, the oself3-2 mutant and RNAi plants leads to a significant increase of flg22- and chitin-induced ROS generation, and enhanced resistance to compatible a M. oryzae isolate. Co-expression assays in rice protoplasts and N. benthamiana leaves indicate that APIP6 can promote OsELF3-2 degradation and the degradation can be inhibited by MG132. Take together; these results demonstrate that OsELF3-2 plays a negative role in PTI and is regulated by the APIP6-mediated ubiquitination pathway in rice.

More details are available on the bellow links:
http://www.cell.com/molecular-plant/abstract/S1674-2052(15)00327-5

 
By Ning Yuese
yuese791975@163.com
 

Latest News
  • Apr 18, 2024
    Opening Ceremony of the Training Workshop on Wheat Head Scab Resistance Breeding and Pest Control in Africa Held in CAAS
  • Apr 03, 2024
    IPPCAAS Co-organized the Training Workshop on Management and Application of Biopesticides in Nepal
  • Mar 28, 2024
    Delegation from the School of Agriculture and Food Science of University College Dublin, Ireland Visit to IAS, CAAS
  • Mar 25, 2024
    Director of World Food Prize Foundation visited GSCAAS
  • Mar 20, 2024
    Institute of Crop Sciences (ICS) and Syngenta Group Global Seeds Advance Collaborative Research in the Seed Industry
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal

Links

Ministry of Agriculture and Rural Affairs of the People's Republic of China
Giving to CAAS

CAAS

Copyright © 2023 Chinese Academy of Agricultural Sciences京ICP备10039560号-5 京公网安备11940846021-00001号

No.12 Zhongguancun South Street, Haidian District, Beijing, P.R.China

www.caas.cn/en/

diccaas@caas.cn

Top