中文 Contact
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal
Back CAAS 中文 Contact
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal

Newsroom

Home- Newsroom- Research Updates
Home- Newsroom- Research Updates
分享到

SHVRI researchers identify a novel mechanism for virulence evolution of Newcastle Disease Virus

小 中 大
Source : Shanghai Veterinary Research Institute
Recently, the Waterfowl viral infectious diseases innovation research group led by professor Ding Chan at the Shanghai Veterinary Research Institute (SHVRI) of Chinese Academy of Agricultural Sciences (CAAS) identified quasispecies diversity as a novel mechanism of Newcastle Disease Virus (NDV) virulence enhancement. This finding is published in the Journal of Virology on Dec 9, 2015.


 
Phylogenetic analysis of NDV evolution showed that velogenic viruses likely emerged from a lentogenic progenitor virus via change two amino acids at the F0 cleavage site. The researchers passaged an avirulent isolate JS10 through chicken air sac and embryos, and the pathogenicity of the variants was assessed. A virulent variant, JS10-A10, was generated from consecutive passage in air sacs. And they developed a deep sequencing approach to detect of low-frequency viral variants across the NDV genome and observed that virulence enhancement of JS10 was due to the selective accumulation of velogenic quasispecies and the concomitant disappearance of lentogenic quasispecies. Their results suggest that because it is difficult to avoid contact between natural waterfowl reservoirs and sensitive poultry operations, circulating lentogenic NDV strains may represent a potential reservoir for emergent velogenic NDV strains that could cause outbreaks in chickens.

 
By Chen Hongjun
 vetchj@shvri.ac.cn

 

Latest News
  • Apr 18, 2024
    Opening Ceremony of the Training Workshop on Wheat Head Scab Resistance Breeding and Pest Control in Africa Held in CAAS
  • Apr 03, 2024
    IPPCAAS Co-organized the Training Workshop on Management and Application of Biopesticides in Nepal
  • Mar 28, 2024
    Delegation from the School of Agriculture and Food Science of University College Dublin, Ireland Visit to IAS, CAAS
  • Mar 25, 2024
    Director of World Food Prize Foundation visited GSCAAS
  • Mar 20, 2024
    Institute of Crop Sciences (ICS) and Syngenta Group Global Seeds Advance Collaborative Research in the Seed Industry
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal

Links

Ministry of Agriculture and Rural Affairs of the People's Republic of China
Giving to CAAS

CAAS

Copyright © 2023 Chinese Academy of Agricultural Sciences京ICP备10039560号-5 京公网安备11940846021-00001号

No.12 Zhongguancun South Street, Haidian District, Beijing, P.R.China

www.caas.cn/en/

diccaas@caas.cn

Top