English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[chinadaily] Chinese scientists identify gene that can boost grain yield by 30 percent

发布时间:2022-07-25 |来源: chinadaily 2022年7月22日|作者:ZHAO YIMENG
字体 小 中 大

Agronomists from the Institute of Crop Sciences, CAAS, harvest rice at an experimental field in Beijing's Shunyi district in November. [Photo provided to chinadaily.com.cn]


Chinese scientists have identified a gene that is expected to boost grain yield by at least 30 percent and shorten the time taken for rice to grow, says a paper published in the Science Magazine online on Friday.


The high-yielding gene, called OsDREB1C, can simultaneously improve the photosynthetic capacity and nitrogen use efficiency while triggering early flowering of rice, according to Zhou Wenbin, leader of the research team at the Chinese Academy of Agricultural Sciences.


Zhou, a researcher at the Institute of Crop Sciences of the CAAS, said field trials with OsDREB1C rice were being conducted since 2018 in Beijing; Sanya in Hainan province; and Hangzhou, capital of Zhejiang province.


The gene led to rice variety Nipponbare's yield increasing by 41.3 percent to 68.3 percent. In the case of Xiushui 134, another variety, yield increased by at least 30.1 percent.


Overexpression of the gene in Nipponbare helped rice ears to develop 13 days early. According to the paper, the gene also helps in increasing yield and shortening flowering time of wheat. It is estimated that the production capacity of rice, wheat, and corn in China will increase by more than 20 percent by 2030 to help feed 1.45 billion people in the country. This is particularly helpful at a time when there is need to increase grain yield to meet the challenges posed by the COVID-19 pandemic and extreme climate change.


Breeding of dwarf varieties of rice in the 1960s and successful hybrid rice breeding, a concept invented by late agronomist Yuan Longping, are the two major breakthroughs in grain production, according to Zhou. The industrialization of hybrid rice increased production by 20 percent to 30 percent. These breakthroughs were achieved following the identification of a key gene, Yuan said.


This time round, a dramatic increase in yield and shorter growth duration is being achieved by genetically modulating the expression of a single transcriptional regulator gene, OsDREB1C, the paper said.


In addition, by enhancing photosynthetic capacity and the efficiency of nitrogen use, the gene offers the promise of more sustainable food production in the future.


Wan Jianmin, an academician at the Chinese Academy of Engineering and former vice-president of CAAS, said the outcome has provided a potentially valuable gene resource for scientists working to improve crop varieties.


"The study brings us hope of high yield with less nitrogen fertilizer application and shortened duration of growth," he said.


If you have any problems with this article, please contact us at app@chinadaily.com.cn and we'll immediately get back to you.

(单位: 中国农业科学院作物科学研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号