English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[中国科学报] 《自然—遗传》:周永锋团队借助人工智能加速葡萄精准设计育种

发布时间:2024-11-04 |来源: 中国科学报|作者:李晨 马昕怡
字体 小 中 大

葡萄,因其独特的风味和口感,深受人们喜爱。种下一粒葡萄种子,从种子萌发到结出果实,需要3年。而想要培育出“令人满意的”葡萄品种,需要的时间更久。能否找到一种既“快速”又“简便”的方法实现葡萄品种的“个性化”设计?育种家为此绞尽了脑汁。

中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)研究员周永锋团队提出,利用人工智能进行葡萄育种的新方法,将大幅缩短育种周期,且预测准确度高达85%,相比传统方法,育种效率可提高400%。

该研究有望实现葡萄的精准育种设计,加速葡萄品种创新,并为其他多年生作物育种提供方法参考。

2024年11月4日18时,相关研究成果发表在《自然—遗传》(Nature Genetics )上。

葡萄育种技术的“跨越”

“葡萄美酒夜光杯,欲饮琵琶马上催。”这句千古流传的诗句反映了当时人们对葡萄的喜爱。有研究表明,约1万多年前,人们就开始尝试“改造”葡萄,所谓“改造”,就是有选择性地通过特定手段对原有葡萄性状进行改良,这一过程又被称为育种。

640.webp.png

早期,人们发现野生葡萄后,会把品质优良的葡萄苗保存下来,通过一代又一代的繁育,只留下符合要求的后代,这种方法固然有用,但高度依赖自然种质资源,可改良程度有限,因此,被称为育种1.0技术。后来,人们发现如果既想要葡萄“产量高”,也想要“甜度高”,可以把“产量高”的葡萄品种和“甜度高”的葡萄品种进行杂交,以培育出聚合了双亲优良性状的杂交后代,这种方法满足了有针对性选育葡萄品种的需求,但育种周期十分漫长,往往需要经过数十年的筛选,工作量极大,且由于葡萄高度杂合,杂交后,后代会出现性状分离,杂交效果并不理想,该方法被称为育种2.0技术。进入二十一世纪以来,随着分子生物学、数量遗传学、生物信息学等学科的兴起,育种家提出育种3.0技术,即分子育种,通过分子标记来“设计”性状,并在此基础上,提出育种4.0,即智能设计育种,基于海量基因组和遗传数据进行分析预测,以提高育种效率和精确度,全基因组选择育种便是其中最具代表性的一种。

640.webp (1).jpg

首个葡萄泛基因组发布

目前,葡萄育种仍停留在2.0阶段。要想实现从2.0到4.0的跨越,首先需要足够全面、准确的基因组数据。为此,周永锋团队自2015年起,便开始聚焦葡萄的设计育种工作,并于2023年发布首个葡萄端粒到端粒完整参考基因组图谱,相关研究以封面文章发表在《园艺研究(Horticulture Research)》上。然而,要实现精准“设计”,一个基因组数据远远不够。在此基础上,周永锋团队又陆续对包括野生种和栽培品种在内的9个二倍体葡萄品种进行测序、组装,得到18个端粒到端粒的单倍型基因组,并整合已有的基因组数据,构建了目前首个最全面、最准确的的葡萄泛基因组(Grapepan v1.0),总长度达1.43Gb,是单个参考基因组大小的近3倍。

640.webp (2).jpg

葡萄泛基因组(Grapepan v1.0)

为了进一步弄清楚葡萄基因与性状之间的关联,周永锋团队从近万份葡萄品种中选取了400多份有代表性的葡萄品种,连续3年对包括果穗大小、浆果中代谢物含量、浆果大小和果皮颜色等在内的29个农艺性状进行调查,构建了葡萄基因型图谱和性状图谱。在此基础上,周永锋团队利用数量遗传学分析,鉴定到148个与农艺性状显著相关的位点,其中122个位点为首次发现。研究发现,调控不同性状的位点间存在关联性,如可溶性固形物含量和浆果宽度相关位点邻近。此外,不同葡萄群体(酿酒、鲜食、美洲鲜食杂种)之间存在显著分化的区域,这些区域中存在与浆果颜色、果皮涩味、浆果形状、果穗重量、果肉硬度、果实大小等相关的多个性状相关的遗传位点,表明对农艺性状歧化选择促进了酿酒与鲜食葡萄的分化。

640.webp (3).jpg

葡萄不同群体间29个农艺性状及其相关性

640.webp (4).jpg

与农艺性状相关的候选基因座及其人工选择足迹

“AI”指导葡萄育种

全面、准确的基因组数据是精准“设计”育种的基础,而如何深入挖掘这些数据来优化育种策略并指导育种?是智能育种必须回答的问题。周永锋团队决定引入机器学习,通过构建预测模型,根据评分进行早期个体的预测和选择,从而指导、优化育种策略。

640.webp (5).jpg

基因组选择育种策略

在本研究中,研究人员将包含了性状和基因型的数据划分为三个子集:训练集、验证集和测试集。利用机器学习算法解析基因型与性状数据间的复杂网络关系,运用训练数据集构建了首个葡萄全基因组选择模型,研究进一步通过验证集调整模型参数,对模型进行优化,最后测试数据集评估最终模型的性能。研究结果表明,结合了结构变异信息和机器学习模型的计算多基因评分预测准确率高达 85%。

640.webp (6).jpg

主要农艺性状的预测准确率大幅提升通过这一模型,育种家可以快速准确地评估大量育种材料的遗传潜力,从而更好地选择优良品种。与杂交育种需要根据葡萄成熟后的表型作出判断相比,全基因组选择育种技术在葡萄幼苗时期就可以预测其成熟后的性状,尽早剔除掉不符合条件的幼苗,减少了不必要的人工成本和投入,在葡萄育种应用中有很大的应用潜力,提高葡萄育种效率,加速葡萄新种质的创制,革新葡萄育种策略。

640.webp (7).jpg

全基因组选择育种与杂交育种的对比目前,相关研究成果已申请获批国家发明专利6项,已申请国际专利1项。中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)研究员周永锋、副研究员肖华和南京农业大学教授房经贵为该文章的通讯作者,基因组所(大鹏湾实验室)博士后刘众杰、王楠,博士生苏颖、龙颀明,副研究员彭艳玲和南京农业大学教授上官凌飞为该文章的共同第一作者。中国农业科学院郑州果树研究所刘崇怀研究员、樊秀彩研究员、孙磊博士,新疆农业科学院园艺作物研究所伍新宇研究员、钟海霞副研究员参与了该研究。中国农业科学院深圳农业基因组研究所/中国热带农业科学院黄三文院士、美国加州大学尔湾分校Brandon Gaut教授对这项研究给予了重要指导。该研究获得了国家重点研发计划、国家优秀青年科学基金(海外)、国家自然科学基金、中央政府引导地方科技发展专项资金项目等项目的支持。

(单位: 中国农业科学院深圳农业基因组研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号